	ECOMM Integrated Merchant Agent (IMA)
	
	[image: image2.wmf]

	Administrator's manual
	
	Confidential

	1.1.2
	
	2010-05-12

Card Suite

ECOMM Integrated Merchant Agent (IMA)
Administrator's manual
Change history

	Version
	Date
	Author
	Change history

	0.1
	2007-02-12
	Reinis Reinikovs
	Initial version of the document

	1.2
	2007-11-23
	Karlis Laganovskis
	Added information on additional java classes needed for merchant to operate.

	1.3
	2008-06-27
	Reinis Reinikovs
	sync with Latvian version

	1.4
	2009-02-13
	Agnis Liukis
	Corrected –r calls interface, fixes to results.

	1.1.0
	2009-08-17
	Agnis Liukis
	Document layout and version numbering changed.

	1.1.2
	2009-10-16
	Intars Dzalilovs
	Registering DMS authorization with command line parameter -a

	1.1.2
	2010-02-24
	Intars Dzalilovs
	Additional meanings for regular payment execution result codes

	1.1.2
	2010-04-01
	Agnis Liukis
	Partial reversals short description added.

	1.1.2
	2010-04-12
	Agnis Lkukis
	Transaction result description updated.

	1.1.3
	2010-05-12
	Svjatoslavs Čagajevs
	Registration of regular payment along with an authorization only, no first payment

Table of contents

41 Introduction

41.1 Purpose of the document

41.2 Audience

41.3 Applicability of the document

52 Preparing IMA for operation

52.1 System requirements

52.1.1 The required third-party software

52.2 Installing the system

52.2.1 Installing the IMA product

52.2.2 Additional Java class files

52.2.3 Configuring the IMA product

73 Integrating IMA into Merchant solution

73.1 General functional scheme

83.2 Integration

83.2.1 Registering transactions

93.2.2 Registering DMS authorization

103.2.3 Executing a DMS transaction

113.2.4 Transaction result

133.2.5 Transaction reversal

143.2.6 Transaction refund

143.2.7 End of business day

153.2.8 Regular payments

153.2.8.1 Registration

173.2.9 Execution

183.2.10 Applying the Properties parameter

183.2.11 Readdressing the client

193.2.12 Generating cardinfo.html

193.2.13 Different languages functionality

203.2.13.1 Translating javascript error messages in card entering window

203.2.14 Regular payments functionality

203.2.14.1 Registration and the first payment

213.2.14.2 Recurring payments

213.3 Additional information

213.3.1 Facilities to trace transactions

213.3.2 Notes on Payment Server Browser

223.3.3 Notes on Airline itinerary

1 Introduction

1.1 Purpose of the document

This document describes the steps to install and run the Integrated Merchant Agent (IMA).

IMA system is designed to integrate merchants into the systems ECOMM 3D-Secure for transactions originated in the WWW environment.

1.2 Audience

The document is intended for system administrators of the cs.bc.ecomm_merchant module.

1.3 Applicability of the document

This document corresponds to the following software modules:

· Electronic commerce system cs.bc.ecomm_server2 integrated into RTPS Payment Server

· ECOMM Integrated Merchant Agent (IMA).

The module is also compatible with the earlier e-commerce system ecomm.Server, however, in such case, only backward forwarded calls can be functionally applied. To prevent confusion, it is recommended to use an older IMA version that functions only with ecomm.Server.

2 Preparing IMA for operation

2.1 System requirements
2.1.1 The required third-party software

	Component
	Version
	Notes

	Sun Java Runtime Environment (JRE)
	1.4. or higher
	Installation in accordance with http://java.sun.com/j2se/1.4/install-docs.html

2.2 Installing the system

2.2.1 Installing the IMA product

To install IMA, unpack the ‘cs.bc.ecomm_merchant-<version>.tgz’ archive in the working directory. As a result, the ‘cs.bc.ecomm_merchant-<version>’ subdirectory will be created along with the directories as follows:
‘example’ – various examples that may be suitable to integrate IMA,
‘jars’ – JAR files for IMA to function (IMA resides in the 'ecomm_merchant.jar' archive),
‘docs’ – stores the present documentation.

2.2.2 Additional Java class files

The following Java library files are required:
jcert.jar, jnet.jar, jsse.jar
These class files are usually included in Java standard installation. They should be placed in the same directory where ecomm_merchant.jar file is located.

2.2.3 Configuring the IMA product

1 Each merchant must receive a bank-generated file (keystore) and a password to use the file. This file is used to establish the SSL connection to ECOMM server and identify the merchant in ECOMM system!

2 ‘Merchant.properties’ file must be changed (this file resides in the ‘example’ directory):

bank.server.url – address to access the ECOMM server (must be received from the bank)

https.proxy.host – HTTPS proxy server address (optional)

https.proxy.port – HTTPS proxy server port (optional)

https.handler – library to support HTTPS protocol (optional). If IMA is run.

https.cipher – algorithm to encrypt HTTPS connection (optional). Typically „SSL_RSA_WITH_RC4_128_MD5” is applied.

keystore.file – certificate file (keystore) received from the bank

keystore.type – certificate file type. We recommend that you always apply “JKS”.

keystore.password – password received from the bank.
ecomm.server.version – if ECOMM 2 server version is used, must be „2.0” if ECOMM 2 server specific additional details are needed to be returned. If parameter is not specfied or equals „1.0”, additional details will not be returned.
connection.timeout – time in seconds to log into ECOMM server. Note that through this parameter you can only reduce the timeout as compared to its default value which depends on a specific platform.

3 Create and send to the bank a template in HTML format (cardinfo.html) and the supporting files to enter card information. For more details, refer to the section 3.2.12 Generating cardinfo.html.
4 Bank must receive information about URLs used to readdress a client back to the merchant. Remember that readdressing is performed applying the HTTP POST method. This means that URL cannot contain any of the following parameters:

returnOkUrl – the client will be readdressed to this address after 3D Secure authentication and transaction are complete (regardless of the result).

returnFailUrl – the client will be readdressed to this address should a technical failure occur in the ECOMM system.

3 Integrating IMA into Merchant solution

3.1 General functional scheme

5 Client selects a product and is ready to pay for the purchase. On pressing the ‘Checkout’ button/link, control is transferred to the merchant solution.
6 Merchant registers a transaction in ECOMM system (indicates the amount, currency, IP address of a client, and gives a concise transaction description (optional)), receiving transaction identifier in response.

· Merchant has the options to define and send payment details; these options are described in the documentation of the solution.

7 Client (with transaction identifier being specified) is readdressed to ECOMM payment server so that to enter card data. Data is entered using the template provided by the merchant.

8 Once card data is entered, the following operations are performed, depending on whether the merchant supports 3D Secure:

· Merchant supports 3D Secure. Once card data is entered, client authentication takes place as part of 3D Secure. The results of authentication are communicated to ECOMM system.

· Merchant doesn’t support 3D Secure. In this instance transaction takes place.

9 Transaction takes place if authentication is successfully completed.

10 Client is readdressed back to the merchant (with transaction identifier being indicated).

11 Merchant, having the transaction identifier, receives information on transaction results from ECOMM (whether completed or not).

12 In the event of a DMS transaction, an additional transaction is necessary to effect payment by the client. Such a transaction is typically carried out after product delivery to the customer.

13 If required, the merchant can request the ECOMM payment server to reverse the transaction (reversal report).
14 If required a transaction can be refunded (refund report) also if the payment status is FINISHED.
15 At regular intervals (once a day), the merchant sends a request to ECOMM server to close the business day.

16 Payment can concurrently serve as a registration for a regular payment.

17 Merchant can carry out regular payments (see 0).

18 Merchant can browse its transactions using the EBPP browser (cs.ui.ebpp).

Figure 3‑1 – Functional scheme

[image: image1.emf]Card Suite (Transmaster)

ECOMM

RTPS

ECOMM

Merchant

Agent

E-shop

New GUI

Transaction

info

Payment

Server

Merchan

t

Transaction info

Authentication,

payment

SOAP_IF

Customer initiates

registration

DMS or

SMS

messag

e

3.2 Integration

ECOMM payment server can be called through IMA (resides in the ecomm_merchant.jar archive) in several ways.

19 Calling the Java arhve ecomm_merchant.jar from a command line. See the ‘example’ directory for examples.

20 Direct calling the lv.tietoenator.cs.ecomm.merchant.Merchant class service methods. Configuration file name has to be assigned to a Merchant class when this class is being created. File name lets to initialize IMA, and ConfigurationException is returned if an error occurs.

Example:

 Merchant merchant;

 try

 {

 merchant = new Merchant(propFile);

 } catch (ConfigurationException e)

 {

 System.err.println("error: " + e.getMessage());

 return;

 }

 String result = merchant.sendTransData(amount, currency, client_ip, description);
More examples can be found in the ‘example’ directory.

It is also possible to call ECOMM server without using Integrated Merchant Agent, but making direct http calls (using SSL). Request with all the necessary parameters is passed using POST method.
3.2.1 Registering transactions

Command line parameters:

 -v
identifies a request for transaction registration

amount
transaction amount in fractional units, mandatory (up to 12 digits)

currency
transaction currency code (ISO 4217), mandatory, (3 digits)

client_ip_addr
client’s IP address, mandatory (15 characters)

description
transaction details, optional (up to 125 characters)

language
authorization language identifier, optional (up to 32 characters)

Method call:

public String

 startSMSTrans(String amount, String currency, String ip, String desc, String language, Properties properties)

 // old methods for backward compatibility

 public String

 startSMSTrans(String amount, String currency, String ip, String desc, String language)

 public String

 sendTransData(String amount, String currency, String ip, String desc, String language)

Http post parameters:

command=v&amount=<amount>¤cy=<currency>&client_ip_addr=<ip>&desc=<desc>&language=<language>&msg_type=SMS(&<property_name>=<property_value>)*

Result:

 TRANSACTION_ID: <trans_id>

 trans_id
transaction identifier (28 characters in base64 encoding)

 In case of an error, the returned string of symbols begins with ‘error:‘.

Example of the result:

 TRANSACTION_ID: bAt6JLX52DUbibbzD9gDFl5Ppr4=

3.2.2 Registering DMS authorization

Command line parameters:

-a
identifies a request for transaction registration

amount
transaction amount in fractional units, mandatory (up to 12 digits)

currency
transaction currency code (ISO 4217), mandatory, (3 digits)

client_ip_addr
client’s IP address, mandatory (15 characters)

description
transaction details, optional (up to 125 characters)

language
authorization language identifier, optional (up to 32 characters)

Method call:

public String

 startDMSAuth(String amount, String currency, String ip, String desc, String language, Properties properties)

 // old methods for backward compatibility
public String

 startDMSAuth(String amount, String currency, String ip, String desc, String language)

 public String

 startDMSAuth(String amount, String currency, String ip, String desc, String language)

Http post parameters:

command=a&amount=<amount>¤cy=<currency>&client_ip_addr=<ip>&desc=<desc>&language=<language>&msg_type=DMS(&<property_name>=<property_value>)*

Result:

 TRANSACTION_ID: <trans_id>

 trans_id
transaction identifier (28 characters in base64 encoding)

 In case of an error, the returned string of symbols begins with ‘error:‘

Example of the result:

 TRANSACTION_ID: bAt6JLX52DUbibbzD9gDFl5Ppr4=

3.2.3 Executing a DMS transaction

Command line parameters:

 -t
identifies a request for transaction registration

auth_id
identifies authorization of a financial transaction

amount
transaction amount in fractional units, mandatory (up to 12 digits)

currency
transaction currency code (ISO 4217), mandatory, (3 digits)

client_ip_addr
client’s IP address, mandatory (15 characters)

description
transaction details, optional (up to 125 characters)

Method call:

public String

 makeDMSTrans(String auth_id, String amount, String currency, String ip, String desc, String language, Properties properties)

 // old methods for backward compatibility

 public String

 makeDMSTrans(String auth_id, String amount, String currency, String ip, String desc, String language)

 public String

 makeDMSTrans(String auth_id, String amount, String currency, String ip, String desc)

Http post parameters:

command=t&trans_id=<auth_id>&amount=<amount>¤cy=<currency>&client_ip_addr=<ip>&desc=<desc>&language=<language>&msg_type=DMS(&<property_name>=<property_value>)*
Results:

 RESULT: <result>

 RESULT_CODE: <result_code>

 RRN: <rrn>

 APPROVAL_CODE: <app_code>

 CARD_NUMBER <pan>

result – transaction results: OK – successful transaction, FAILED – failed transaction

result_code – transaction result code returned from Card Suite Processing RTPS (3 digits)
rrn – retrieval reference number returned from Card Suite Processing RTPS (12 characters)

app_code – approval code returned from Card Suite Processing RTPS (max 6 characters)
pan – masked card number
RESULT_CODE fields are informative only. The fields RRN and APPROVAL_CODE appear only for successful transactions, for informative purposes, and they facilitate tracking the transactions in the Card Suite Processing RTPS system. The decision as to whether a transaction was successful or failed must be based on the value of RESULT field only.

In case of an error, the returned string of symbols begins with ‘error:‘.

In case of a warning, the returned string of symbols begins with ‘warning:’ (reserved for future use).

Example of the result:

 RESULT: OK

 RESULT_CODE: 000

 RRN: 123456789012

 APPROVAL_CODE: 123456
 CARD_NUMBER: 9***********9999
3.2.4 Transaction result

Command line parameters:

 -c
identifies a request for transaction result
trans_id
transaction identifier, mandatory (28 characters)

client_ip_addr
client's IP address, mandatory (15 characters)

Method call:

 public String

 getTransResult(String trans_id, String ip)

Http post parametri:

command=c&trans_id=<trans_id>&client_ip_addr=<ip>

Result:

 RESULT: <result>

 RESULT_PS: <result_ps>

 RESULT_CODE: <result_code>

 3DSECURE: <3dsecure>

 RRN: <rrn>

 APPROVAL_CODE: <app_code>
 CARD_NUMBER: <pan>
 AAV: <aav>

 RECC_PMNT_ID: <rcc_pmnt_id>

 RECC_PMNT_EXPIRY: <rcc_pmnt_ex>

 MRCH_TRANSACTION_ID: <mrch_tx_id>

result – transaction result status:

OK – successfully completed transaction,

FAILED – transaction has failed,

CREATED – transaction just registered in the system,

PENDING – transaction is not accomplished yet,

DECLINED – transaction declined by ECOMM, because ECI is in blocked ECI list (ECOMM server side configuration),

REVERSED – transaction is reversed,

AUTOREVERSED – transaction is reversed by autoreversal,

TIMEOUT – transaction was timed out
result_ps – transaction result, Payment Server interpretation (shown only if configured to return ECOMM2 specific details – see ecomm.server.version parameter in 2.2.3 chapter):
FINISHED – successfully completed payment,

CANCELLED – cancelled payment,

RETURNED – returned payment,
ACTIVE – registered and not yet completed payment.
result_code – transaction result code returned from Card Suite Processing RTPS (3 digits)
3dsecure – 3D Secure status:

OK – successful 3D Secure authorization
FAILED – failed 3D Secure authorization
ATTEMPTED – cardholder is not a member of 3D Secure scheme
rrn – retrieval reference number returned from Card Suite Processing RTPS
app_code – approval code returned from Card Suite Processing RTPS (max 6 characters)

pan – Masked card number

aav – the results of the verification of hash value in AAV merchant name

OK – hash value matches

FAILED – hash value fails to match

rcc_pmnt_id – Reoccurring payment (if available) identification in Payment Server.
rcc_pmnt_ex – Reoccurring payment (if available) expiry date in Payment Server in form of YYMM
mrch_tx_id – Merchant Transaction Identifier (if available) for Payment – shown if it was sent as additional parameter with name “mrch_transaction_id” on Payment registration.
The RESULT_CODE and 3DSECURE fields are informative only and can be not shown. The fields RRN and APPROVAL_CODE appear for successful transactions only, for informative purposes, and they facilitate tracking the transactions in Card Suite Processing RTPS system. The decision as to whether a transaction was successful or failed must be based on the value of RESULT field only.

In case of an error, the returned string of symbols begins with ‘error:‘.

In case of a warning, the returned string of symbols begins with ‘warning:’ (reserved for future use).
Example of the result:

 RESULT: OK

 RESULT_PS: FINISHED

 RESULT_CODE: 000

 3DSECURE: ATTEMPTED

 RRN: 123456789012

 APPROVAL_CODE: 123456
 CARD_NUMBER: 9***********9999
 RECC_PMNT_ID: 1258

 RECC_PMNT_EXPIRY: 1108

3.2.5 Transaction reversal

Command line parameters:

 -r

identifies a request for transaction reversal

trans_id
transaction identifier, mandatory (28 characters)

amount
optional parameter - reversal amount in fractional units (up to 12 characters). For DMS authorizations only full amount can be reversed, i.e., the reversal and authorization amounts have to match. In other cases partial reversal is also available.
Method call:

 public String

 reverse(String trans_id)

 public String

 reverse(String trans_id, String amount)

Http post parameters:

command=r&trans_id=<trans_id>&amount=<amount>

Result:

 RESULT: <result>

 RESULT_CODE: <result_code>

result – reversal results:

OK – successful reversal transaction

FAILED – failed reversal transaction

result_code – reversal result code returned from Card Suite Processing RTPS (3 digits)

In case of an error, the returned string of symbols begins with ‘error:‘.

In case of a warning, the returned string of symbols begins with ‘warning:’ (reserved for future use).
Example of the result:

 RESULT: OK

 RESULT_CODE: 400

3.2.6 Transaction refund

Command line parameters:

 -k
identifies a request for transaction refund
trans_id
transaction identifier, mandatory (28 characters), full original transaction amount is always refunded
Method call:

 public String

 refund(String trans_id)

Http post parameters:

command=k&trans_id=<trans_id>&amount=<amount>

Result:

 RESULT: <result>

 RESULT_CODE: <result_code>

result – Refund results:

OK
successful refund transaction

FAILED
failed refund transaction

result_code – result code returned from Card Suite Processing RTPS (3 digits)
refund_transaction_id refund transaction identifier – applicable for obtaining refund payment details or to request refund payment reversal.
In case of an error, the returned string of symbols begins with ‘error:‘.

In case of a warning, the returned string of symbols begins with ‘warning:’ (reserved for future use).
Transaction status in payment server after refund is not changed.
3.2.7 End of business day
Business day ends on closing the last opened batch for a particular merchant.

Command line parameters:

 -b
identifies a request for the end of business day

Method call:

 public String

 closeDay()

Http post parameters:

command=b

Result:

 RESULT: <result>

 RESULT_CODE: <result_code>

 FLD_075: <fld_075>

 FLD_076: <fld_076>

 FLD_087: <fld_087>

 FLD_088: <fld_088>

result – end-of-business-day results:

OK
successful end of business day

FAILED
failed end of business day

result_code – end-of-business-day code returned from Card Suite Processing RTPS (3 digits)

fld_075 – the number of credit reversals (up to 10 digits), shown only if result_code begins with 5

fld_076 – the number of debit transactions (up to 10 digits), shown only if result_code begins with 5

fld_087 – total amount of credit reversals (up to 16 digits), shown only if result_code begins with 5

fld_088 – total amount of debit transactions (up to 16 digits), shown only if result_code begins with 5

In case of an error, the returned string of symbols begins with ‘error:‘

Example of the result:

 RESULT: OK

 RESULT_CODE: 500

 FLD_075: 12

 FLD_076: 31

 FLD_087: 3201

 FLD_088: 10099

3.2.8 Regular payments

Regular payments are registered either along with an authorization for a determined on the bank’s/proc. centeres server side amount (to check that the card is ok) without the actual transaction happening or along with the first payment, in SMS or DMS mode. The regular payments functionality is described in section 0. The rec_pmnt_id parameter in JAVA call may be unspecified; in such an event, TRANSACTION_ID becomes the identifier of a regular payment.

3.2.8.1 Registration

Command line parameters for registration along with the first payment:
 -z or -d
request for SMS transaction/DMS authorization registration

amount
transaction amount in fractional units, mandatory (up to 12 digits)

currency
transaction currency code (ISO 4217), mandatory, (3 digits)

client_ip_addr
client’s IP address, mandatory (15 characters)

description
transaction details

rec_pmnt_id
merchant-selected regular payment identifier

expiry

preferred deadline for a regular payment MMYY
Command line parameters for registration with an authorization for a certain amount, without the first payment:
-p

request for authorization and registration

currency
transaction currency code (ISO 4217), mandatory, (3 digits)

client_ip_addr
client’s IP address, mandatory (15 characters)

description
transaction details

rec_pmnt_id
merchant-selected regular payment identifier

expiry

preferred deadline for a regular payment MMYY
Method call:

public String startSMSTransRP(String amount, String currency,

 String ip, String desc, String language, String recc_pmnt_id, String expiry, Properties properties)

 public String startDMSAuthRP(String amount, String currency,

 String ip, String desc, String language, String recc_pmnt_id, String expiry, Properties properties)
public String registerRP(String currency, String ip, String desc, String language, String recc_pmnt_id, String expiry, Properties properties)
Http post parameters:

command=z&amount=<amount>¤cy=<currency>&client_ip_addr=<ip>&desc=<desc>&language=<language>&msg_type=SMS&biller_client_id=<recc_pmnt_id>&perspayee_expiry=<expiry>&perspayee_gen=1(&<property_name>=<property_value>)*

command=d&amount=<amount>¤cy=<currency>&client_ip_addr=<ip>&desc=<desc>&language=<language>&msg_type=DMS&biller_client_id=<recc_pmnt_id>&perspayee_expiry=<expiry>&perspayee_gen=1(&<property_name>=<property_value>)*
command=p&amount=0¤cy=<currency>&client_ip_addr=<ip>&desc=<desc>&language=<language>&msg_type=AUTH&biller_client_id=<recc_pmnt_id>&perspayee_expiry=<expiry>&perspayee_gen=1(&<property_name>=<property_value>)*
Response to registration request is analogic to startSMSTrans, startDMSAuthRP or registerRP calls, except for additional fields as follows:

RECC_PMNT_ID: rec_pmnt_id, if specified, othervise TRANSACTION_ID
RECC_PMNT_EXP min (card expiry date, expiry parameters).
For DMS, transactions are being generated through the same makeDMSTrans call.
Overwriting existing recurring payments:

If recurring payment for current client (card) is already defined for template, it needs to be overwritten. Overwriting recurring payments can be done by specifying additional parameter perspayee_overwrite=1. In this case all existing recurring payments for template defined for current client (card) will be deleted.

In command line additional parameter can be added at the end of mandatory parameters with syntax:

--parameter_name=parameter_value.

In method call it can be added in properties variable.

In Http post parameters it can be added as usual parameter (as shown in examples above).
3.2.9 Execution

Command line parameters:

 -e
request for SMS transaction registration

amount
transaction amount in fractional units, mandatory (up to 12 digits)

currency
transaction currency code (ISO 4217), mandatory, (3 digits)

client_ip_addr
client’s IP address, mandatory (15 characters)

description
transaction details

rec_pmnt_id
merchant-selected regular payment identifier

Method call:
 public String makeRP(String recc_pmnt_id, String amount, String currency,

 String ip, String desc, Properties properties)

Http post parameters:

command=e&amount=<amount>¤cy=<currency>&client_ip_addr=<ip>&desc=<desc>&language=<language>&biller_client_id=<recc_pmnt_id>(&<property_name>=<property_value>)*

Result:

 TRANSACTION_ID: <trans_id>
 RESULT_CODE:<result_code>
 RRN:<rrn>

 APPROVAL_CODE:<appr_code>

trans_id – transaction identifier (28 characters in base64 encoding)
In case of regular payment some result codes have additional meanings:

108 – Merchant communication with cardholder has to be done;
114 – It is possible to try to execute the transaction next time;
180 – Cardholder ended cooperation. Regular payment has been deleted;
2xx – Regular payment has been deleted.

In case of an error, the returned string of symbols begins with ‘error:‘

3.2.10 Applying the Properties parameter

Through the Properties parameter more details can be provided for Payment Server. Parameter application is conditional on a solution and described in the documentation thereof. One of the applications is flight ticket itinerary details.

Properties parameters can be entered in the command line calls as follows:

<Ecomm command line call> -- <property_name1>=<property_value1> <property_name2=<property_value2> …

3.2.11 Readdressing the client

The client can be readdressed (to enter card data) to the bank-specified URL applying the GET or POST method. It is important that the trans_id variable is transferred during readdressing. This variable contains the identifier of a transaction which has to be paid up. (Note that trans_id can include the characters ‘+’, ‘=’ and ‘/’ which must be replaced with web-friendly series (for example, ‘=’ with ‘%3D’) before it is sent. In Java environment this can be done applying the URLEncoder.encode method). Additional parameters can be transferred during the readdressing, which will be returned back to the merchant as the client is being readdressed to the merchant page.

An example of the POST method applied using JavaScript is found in the ‘example/client_to_ecomm.html’ directory and is as follows:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dtd">

<html>

<head>

<title>Merchant example post template to ECOMM</title>

<script type="text/javascript" language="javascript">

function redirect() {

 document.returnform.submit();

}

</script>

</head>

<body onLoad="javascript:redirect()">

<form name="returnform" action="%%post_url%%" method="POST">

 <input type="hidden" name="trans_id" value="%%trans_id%%">

 <!-- To support javascript unaware/disabled browsers -->

<noscript>

 <center>Please click the submit button below.

 <input type="submit" name="submit" value="Submit"></center>

</noscript>

</form>

</body>

</html>

The string of symbols %%post_url%% in the example has to be replaced with the URL of ECOMM server provided by the bank, while %%trans_id%% - with transaction identifier.

3.2.12 Generating cardinfo.html

Card data is entered into a dynamically generated HTML template whose design can be adapted to the needs of the merchant. A sample template is found in ‘example/cardinfo.html’. ECOMM server recognizes the following strings of symbols in the template:

	%%javascript%%
	is replaced with JavaScript for the verification of input fields. If the merchant wants to use this functionality themselves, this string may be omitted.

	%%formdef%%
	is replaced with <form id=”cardentry” action=<url> method="post"> <input type="hidden" name="trans_id" value="<trans_id>" readonly> <input type="hidden" name="count" value="X" readonly> where X is form sending trial number

	%%cardname%%
	<input type="text" name="cardname" size="19" maxlength="100">

	%%cardnr%%
	<input type="text" name="cardnr" size="19" maxlength="19">

	%%expmonth%%
	<input type="text" name="validMONTH" size="2" maxlength="2">

	%%expmonth_select%%
	<select name=”validMONTH”><option value=”01”>01</option>...</select>

	%%expyear%%
	<input type="text" name="validYEAR" size="2" maxlength="2">

	%%expyear_select%%
	<select name=”validYEAR”><option value=”08”>08</option>...</select>

	%%cvc2%%
	<input type="text" name="cvc2" size="4" maxlength="4">

	%%cvc2_password%%
	<input type="password" name="cvc2" size="4" maxlength="4">

	%%amount%%
	transaction amount

	%%ccyalpha%%
	transaction currency

	%%description%%
	transaction details transferred by the merchant to ECOMM server

3.2.13 Different languages functionality

Starting with IMA version 2.08, ECOMM supports the multilanguage user interface. A set of multiple templates is built up where each set represents the visual contents in a language at user option.

To set the desired language in the user interface, the said HTML templates should be created for the client and sent to ECOMM server service personnel with the desired language identifiers specified for each set of templates. On the server, each language can have one identifier with maximum length of 32 ASCII characters. Language identifier can be composed of lower case letters, digits, and underline (_) in ASCII coding.

When ECOMM server has no language setting for a selected merchant (language templates are not installed), default templates are applied for user interface.

If IMA is called from the command line, description parameters should also be set along with setting the language parameter. Both the description parameters and language identifier are optional transaction parameters. If description is not needed, space line (””) has to be used instead.

Different languages functionality is implemented only with the end user interface. For end-of-business-day operations and reversals no language setting is available.
Error report localization is performed applying locale.properties files. A file with such name must be in each template directory, error reports of which must be localized. The following default server side error reports are applied:
invalid_cardnr=Invalid card number

invalid_cardnr_length=Card number length should be in range 13 - 19

invalid_cardname=Card name length should be in range 1 - 100

invalid_exp_year=Expiration year should be in range 01 - 99

invalid_exp_month=Expiration month should be in range 01 - 12

invalid_cvc2=Invalid CVC2 value

3.2.13.1 Translating javascript error messages in card entering window
In file cardinfo.html before %%javascript%% tag the following javascript object with messages in the desired language must be defined.

<script language="JavaScript">

strLocale = new Object();

strLocale_loc.enter_cvc = 'Enter CVC2/CVV2 or CID code!';

strLocale_loc.enter_cid = 'Enter Amex CID code!';

strLocale_loc.enter_cvc2 = 'Enter CVC2/CVV2 code!';

strLocale_loc.enter_name = 'Enter name, surname!';

strLocale_loc.enter_cardnr = 'Enter card number!';

strLocale_loc.enter_expiry = 'Enter card expiry date!';

</script>

If strLocale is not defined, then the messages will be in English same as in this example

To localize JavaScript error messages it possible to apply also the localization file locale.properties,defining the required transalations in it. The following default client side error messages are applied:

enter_cardnr=Enter card number

enter_expiry=Enter card expiry date

enter_cardname=Enter name, surname

enter_cvc=Enter CVC2/CVV2 or CID code

enter_cid=Enter Amex CID code

enter_cvc2=Enter CVC2/CVV2 code

3.2.14 Regular payments functionality

3.2.14.1 Registration and the first payment

21 Cardholder logs into the merchant server for a regular service to be rendered:

· Following VISA and MasterCard requirements, the cardholder specifies the cardholder contact information, payment regularity and expiry date of the agreement;

· Registration takes place concurrently with the first payment; therefore it is mandatory to specify the amount (> 0).

22 Merchant initiates the registration of a Regular Payment (RP) via E-comm agent module and readdresses the cardholder's browser to the ECOMM payments page.

23 Cardholder is authenticated via the 3D infrastructure if necessary.

24 Upon a positive response, ECOMM calls the Payment Server (PS) and registers the RP.

25 Merchant can assign a certain identifier to RP (e.g., a unique agreement number in merchant's own records) to identify forthwith a particular template for regular payments. If the parameter (recc_pmnt_id) is left without setting, it takes the same value as trans_id.

26 The merchant can enter payment details if required (fill in the Properties parameter fields, e.g., mrch_transaction_id).

27 Card attributes are stored on PS server along with RP description to be used in the future to generate payments.

28 Both successful and failed call results are communicated to ECOMM and also to the merchant.

29 PS sends authorization (both SMS and DMS are possible) into payments network, on the amount of the first payment.

30 An unlimited number of RP agreements (templates) can be registered for a card. If a new RP template is created and an existing recc_pmnt_id assigned, such a template is registered instead of an earlier one.

3.2.14.2 Recurring payments

31 Merchant (ECOMM Merchant Agent) initiates each successive RP transaction:

· Merchant utilizes the assigned RP agreement identifier (recc_pmnt_id) and transaction amount;

· ECOMM identifies a transaction by RP agreement identifier and sends the transaction to PS;

· PS uses the received recc_pmnt_id, finds card attributes and performs authorization (recurring payments are effected only in SMS mode) as for MoTo transaction.

· Sending a response to the merchant through ECOMM.

32 Regular payments take place until either of the below events occurs (the template is automatically deleted thereafter):

· RP template reaches expiry date;

· Result code for regular payment execution is 180 or 2xx.

3.3 Additional information
3.3.1 Facilities to trace transactions
Having filled in any field for properties parameter, you can run search (in the Payment Server Browser) and keep track of transaction status.
Payment details - payee and biller – are conveyed to the card processing system, to ISO fields FLD_098 and FLD_104.

3.3.2 Notes on Payment Server Browser
For each payment, the Payment Server Browser can perform commands Finish payment, Cancel payment and Return payment. However, ecomm solution has the following restrictions:

· Active DMS payments (status = Active) can be also cancelled from the Payment Server Browser, having selected the Cancel payment option. A reversal message is generated as if Reverse were selected.

· Active DMS payments can be finished by choosing Finish Payment option.

· Completed payments can be refunded by choosing Return Payment option.

The reason behind payment reject (Action code) can be seen from auth_action_code.

3.3.3 Notes on Airline itinerary

If a flight ticket is being purchased and the Properties parameter details are filled in, the Payment Server will generate a corresponding Airline itinerary message.

	Field name
	Format

	passenger_name
	ans 20

	departure_date
	n 8

	origination_city_airport
	an 3

	carrier_code1
	an 2

	service_class1
	an 1

	stop_over_code1
	an 1

	destination_city_airport1
	an 3

	carrier_code2
	an 2

	service_class2
	an 1

	stop_over_code2
	an 1

	destination_city_airport2
	an 3

	carrier_code3
	an 2

	service_class3
	an 1

	stop_over_code3
	an 1

	destination_city_airport3
	an 3

	carrier_code4
	an 2

	service_class4
	an 1

	stop_over_code4
	an 1

	destination_city_airport4
	an 3

	travel_agency_code
	ans 8

	travel_agency_name
	ans 25

	ticket_number
	n 14

	restriction_sign
	a 1

Abbreviations:

n
– number,

an
– alphanumeric string,
ans
– alphanumeric string padded with space characters to the length required.
	
	
	
	[image: image3.wmf]

	
	
	page 15/22
	

	
	
	
	

	
	
	
	

	© 2008

TietoEnator Corporation
	
	admin-cs.bc.ecomm_merchant.ps.eng.doc
	

[image: image2.wmf][image: image3.wmf]_1234761763.vsd
Laptop

Card Suite (Transmaster)

ECOMM

RTPS

DMS or SMS message

ECOMM
Merchant Agent

E-shop

New GUI

Transaction info

Payment Server

Merchant

Transaction info

Authentication,
payment

SOAP_IF

Customer initiates
registration

